Pt. 53, Subpt. B, App. A 40 CFR Ch. I (7-1-14 Edition)

APPENDIX A TO SUBPART B OF PART 53—OPTIONAL FORMS FOR REPORTING TEST RESULTS

NOISE TEST DATA

Date _____ Applicant _____ Analyzer _____ Pollutant _____ Range ___ Test No. 0% of URL 80% of URL READING DM NUMBER (i) TIME r_i , ppm r_i, ppm READING READING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17				
18				
19				
20				
21				
22				
23				
24				
25				
STD. DEVIATION		S ₀ =	S ₈₀ =	

Figure B-2. Form for noise test data (see §53.23(b)).

Environmental Protection Agency

Pt. 53, Subpt. B, App. A

TEST		READING or CALCULATION	TEST NUMBER														
PARAM	PARAMETER		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.014		Bz															
LOW! DETECTAB		B_L															
		$LDL = B_L \square B_Z$															
		R ₁															
	1	Rıı															
		$IE = R_{I1} - R_1$															
	2	R ₂															
		R _{I2}															
		$IE = R_{12} - R_2$															
	3*	R ₃															
INTER- FERENCE		R _{I3}															
EQUIV-		$IE = R_{I3} - R_3$															
ALENT		R ₄															
	4*	R _{I4}															
		$IE = R_{I4} - R_4$															
		R ₅															
	5*	R _{I5}															
		$IE = R_{15} - R_5$															
	TOTAL*	$\sum_{i=1}^{n} \left IE_{i} \right $															

*If required.

Figure B-3. Form for test data and calculations for lower detectable limit (LDL) and interference equivalent (IE) (see § 53.23(c) and (d)).

DRIFT AND PRECISION TEST DATA

Applicant Date Analyzer Pollutant

	ANALYZER READING, ppm															
TEST DAY	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DATE																
P ₁																
P_2																
P_3																
P ₄																
P ₅																
P_6																
P ₇																
P ₈																
P_9																
P ₁₀																
P ₁₁																
P ₁₂																
$S_n = \frac{1}{6} \sum_{i=7}^{12} P_i$																
L ₁																
L_2																
Z'n																
S'n																
C _{max}						_										
C _{min}																

Figure B-4. Form for drift and precision test data (see § 53.23(e)).

CALCULATION OF ZERO DRIFT, SPAN DRIFT, AND PRECISION

Applicant	Date
Analyzer	Pollutant

Т	EST	CALCULATION		TEST DAY (n)														
PARAMETER		CALCOLATION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	12 HOUR	$12ZD = C_{max} - C_{min}$																
ZERO		$Z = (L_1 + L_2)/2$																
DRIFT	24 HOUR	$24ZD = Z_n - Z_{n-1}$																
		$24ZD = Z'_n - Z'_{n-1}$																
	24 HOUR	$S_n = \frac{1}{6} \sum_{i=7}^{12} P_i$																
SPAN DRIFT		$SD_{n} = \frac{S_{n} - S_{n-1}}{S_{n-1}} \times 100\%$																
		$SD_n = \frac{S_n - S'_{n-1}}{S'_{n-1}} \times 100\%$																
PREC-	20% URL (<i>P</i> ₂₀)	P_{20} = STANDARD DEVIATION of (P_1P_6)																
ISION	80% URL (<i>P</i> ₈₀)	P_{80} = STANDARD DEVIATION of (P_7P_{12})																

Figure B-5. Form for calculating zero drift, span drift, and precision (§ 53.23(e)).

TEST DATA SUMMARY																			
Applican	ıt													Ar	nalyst	t			
Analyzer Pollutant																			
Range Other information Test dates																			
Performance Parameter		Table	Т	est	Nun	ıber	(firs	t se	t)	Π	Te	st Nu	ımbe	r (se	cond	l set)		Number	Pass
		B-1 Spec.	1 2 3 4 5 6 7		8	9	10	11	12	13	14	15	of Failures	or Fail					
Noise, ppm	0% URL 80% URL																		
LDL (> 2 x 0 noise)																			
	IE1																		
Inter-	IE2									L									
ference	IE3		_				_			$ldsymbol{f eta}$									
Equiv- lent,	IE4		-				-			├									
ppm	IE5									-									
	IE6 Total									⊢									
Zero	12 hr		H							⊢									
Drift, ppm	24 hr.						\vdash			┢									
Span	80%									H									
Drift, %	URL						_			Ͱ									
Lag Time,							-			┢									
Fall Time,							-			┢									
Precision,	20% URL									T									
percent	80% URL																		

Figure B-6. Form for reporting a summary of the test results (see § 53.23).

Subpart C—Procedures for Determining Comparability Between Candidate Methods and Reference Methods

SOURCE: 71 FR 61278, Oct. 17, 2006, unless otherwise noted.

§53.30 General provisions.

(a) Determination of comparability. The test procedures prescribed in this subpart shall be used to determine if a candidate method is comparable to a reference method when both methods measure pollutant concentrations in

ambient air. Minor deviations in testing requirements and acceptance requirements set forth in this subpart, in connection with any documented extenuating circumstances, may be determined by the Administrator to be acceptable, at the discretion of the Administrator.

(b) Selection of test sites. (1) Each test site shall be in an area which can be shown to have at least moderate concentrations of various pollutants. Each site shall be clearly identified and shall be justified as an appropriate test site with suitable supporting evidence such as a description of the surrounding